
VON NEUMANN, CONNES, TURING

JOEL B. NEWMAN

September 23, 2023

Abstract. The Connes Embedding Problem (CEP) had been an open problem in
the theory of von Neumann algebras since the 1970′s when, in 2020, it was resolved
by the finding that 𝖬𝖨𝖯∗ = 𝖱𝖤, a computational complexity result involving quan-
tum entanglement. Thus, the study of the CEP and its resolution brings together
the fields of Functional Analysis, Computational Complexity Theory, Mathematical
Quantum Physics, and—with the alternative connection between the two results
found by Goldbring and Hart—Model Theory.

Over the summer of 2023, I had the opportunity to engage in an independent
reading project on this topic in order to better understand these fields and the result,
overseen and mentored by Prof. Marcin Sabok and Prof. Prakash Panangaden. The
following is my write-up of this project, which attempts to explain the CEP and its
resolution by 𝖬𝖨𝖯∗ = 𝖱𝖤 through Model Theory at an elementary level, borrowing
heavily from Goldbring’s excellent Guided Tour paper [1].

Contents
1. Operator Algebras ... 1

1.1. ∗- and C*-algebras .. 2
1.2. von Neumann Algebras ... 3
1.3. The Connes Embedding Problem ... 6

2. Model Theory .. 9
2.1. Classical Model Theory .. 9
2.2. Continuous Model Theory .. 14

3. Computational Complexity ... 17
3.1. Modeling Computing .. 17
3.2. Interactive Proofs and Games ... 18
3.3. 𝖬𝖨𝖯∗ = 𝖱𝖤 .. 21

4. From CEP To Computability .. 22
4.1. From CEP to Model Theory ... 22
4.2. Computability ... 22

5. From MIP* To Non-Computability ... 24
References .. 25

1. Operator Algebras
It all starts with operator algebras. Given a Hilbert space ℋ, we call any con-

tinuous (or equivalently, bounded) linear function ℋ → ℋ an operator.¹ We denote

¹Some sources call any function between topological vector spaces an operator, and refer
instead to “bounded linear operators.”

the space of all such operators on ℋ by ℬ(ℋ). It has a natural structure as an
algebra over ℂ (essentially just a vector space plus bilinear “multiplication,” which
in this case is defined by composition), whence we call ℬ(ℋ) and any subset closed

1

2 JOEL B. NEWMAN

under these operators an operator algebra. Actually, we will be slightly stricter and
require that any operator algebra contain its identity Idℋ; other sources call such
an algebra unital.

1.1. ∗- and C*-algebras. While the name “operator algebra” really just
means that the algebra is made of operators, I think that it is very apt, as in the
field of math studying operator algebras, we repeatedly find structures that may
similatenously defined concretely, according to naturally properties of the operators
that make it up, and algebraically, using only relations.

An elementary result in functional analysis gives that for any 𝑇 ∈ ℬ(ℋ), there
exists a 𝑇 ∗ ∈ ℬ(ℋ) such that for all 𝜉, 𝜂 ∈ ℋ, ⟨𝑇 𝜉, 𝜂⟩ = ⟨𝜉, 𝑇 ∗𝜂⟩, known as its Her-
mitian adjoint, or just adjoint. We can then canonize the ∗-operation, and say that
any subalgebra of ℬ(ℋ) closed under ∗ is a ∗-subalgebra of ℬ(ℋ). But we may just
as well define this algebraically: an ∗-algebra over ℂ is an algebra 𝒜 over ℂ with
associative multiplication and with an additional operation ∗ : 𝒜 → 𝒜 satisfying
that for all 𝑥, 𝑦 ∈ 𝒜, 𝜆 ∈ ℂ,

• (𝑥 + 𝑦)∗ = 𝑥∗ + 𝑦∗

• (𝑥𝑦)∗ = 𝑦∗𝑥∗

• (𝑥∗)∗ = 𝑥
• (𝜆𝑥)∗ = 𝜆𝑥∗ (where 𝜆 is the complex conjugate of 𝜆).
• Id∗ = Id

Returning to elementary definitions from Functional Analysis, we may define a
norm on ℬ(ℋ) by

‖𝑇 ‖ ≔ sup
𝜉∈ℋ

‖𝑇 𝜉‖ℋ
‖𝜉‖ℋ

= sup
𝜉 ∈ 𝑋

‖𝜉‖ℋ = 1

‖𝑇 𝜉‖ℋ.

This norm is known as the operator norm. In fact, any given linear function
𝑇 : ℋ → ℋ, we have that 𝑇 ∈ ℬ(ℋ) if and only if ‖𝑇 ‖ is finite, and that gives that
𝑇 is bounded. With this, we are ready for our first proper subheaded definition:

Definition 1.1.1 (C*-algebra). Concretely, we call a ∗-subalgebra of ℬ(ℋ) a C*-
algebra if it is closed under the topology on ℋ induced by the operator norm, which
we call the operator norm topology.

Algebraically, we call a ∗-algebra 𝒜 together with a norm ‖⋅‖ a C*-algebra if it
satisfies the following relations for 𝑥, 𝑦 ∈ 𝒜:

• ‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖
• ‖𝑥∗‖ = ‖𝑥‖
• ‖𝑥∗𝑥‖ = ‖𝑥‖2 (The C* identity).

The definitions coincide, such that any C*-subalgebra of ℬ(ℋ) is algebraically
a C*-algebra, and any algebraic C*-algebra is isomorphic to a C*-subalgebra of
ℬ(ℋ).

VON NEUMANN, CONNES, TURING 3

1.1.1. Positives, Projections, Partial isometries, Oh My!. There exists a tax-
onomy of various different kinds of elements of C*-algebras, most of which have
very natural concrete and algebraic definitions. Let 𝒜 ⊆ ℬ(ℋ) be a C*-algebra.

• 𝑥 ∈ 𝒜 is self-adjoint if it has real spectrum – that is,
𝜎(𝑥) = {𝜆 | 𝑥 − 𝜆 Idℋ has no inverse in ℬ(ℋ)} ⊆ ℝ. Equivalently, 𝑥 is
self-adjoint if 𝑥 = 𝑥∗.

• 𝑥 ∈ 𝒜 is positive if for all 𝜉 ∈ ℋ, ⟨𝑥𝜉, 𝜉⟩ ≥ 0; equivalently, 𝑥 is positive if
𝑥 = 𝑦∗𝑦 for some 𝑦 ∈ 𝒜. (Note that this means that any positive element
is self-adjoint.)

• 𝑥 ∈ 𝒜 is a projection if it projects vectors onto some closed subset of ℋ;
equivalently, 𝑥 is a projection if it is both self-adjoint and idempotent (i.e.
𝑥∗ = 𝑥 = 𝑥2.)

• 𝑥 ∈ 𝒜 is unitary or a unitary if it is surjective and preserves the inner prod-
uct (i.e. for all 𝜉, 𝜂 ∈ ℋ, ⟨𝑥𝜉, 𝑥𝜂⟩ = ⟨𝜉, 𝜂⟩); equivalently, 𝑥 is a unitary if
𝑥∗𝑥 = 𝑥𝑥∗ = Idℋ.

• 𝑥 ∈ 𝒜 is a partial isometry if it is an isometry (between ℋ and ℋ) on
(ker 𝑥)⟂, the orthogonal compliment of its kernel; equivalently, 𝑥 is a par-
tial isometry if 𝑥∗𝑥 is a projection.

With these definitions, we may introduce a partial order on ℬ(ℋ): for 𝑎, 𝑏 ∈ 𝒜, we
say that 𝑎 ≤ 𝑏 if 𝑏 − 𝑎 is positive.

On projections in specific, we can see that for 𝑝, 𝑞 projections in 𝒜, 𝑝 ≤ 𝑞 if and
only if 𝑝ℋ ⊆ 𝑞ℋ, and so ≤ forms a total order on the set of all projections. More
than that, it actually forms an ortholattice – that is, a complemented, bounded
lattice:

𝑝 ⋏ 𝑞 ≔ lim
strong

𝑛→∞
(𝑝𝑞)𝑛

= orthogonal projection onto 𝑝ℋ ∩ 𝑞ℋ
𝑝⊥ ≔ Idℋ −𝑝

𝑝 ⋎ 𝑞 ≔ (𝑝⊥ ⋏ 𝑞⊥)⊥

= orthogonal projection onto Cl(𝑝ℋ + 𝑞ℋ).

Moreover, this lattice is complete in the sense that every subset (including the
empty set ∅) has a join and a meet.

1.2. von Neumann Algebras. In Definition 1.1.1, we referred to the opera-
tor norm topology in order to define a C*-algebra as a ∗-algebra which is closed
in this topology. We now introduce two new (weaker) topologies: the strong and
weak operator topology.

We define the strong operator topology (SOT) as the topology of pointwise con-
vergence; that is, for a sequence (𝑇𝑛)𝑛∈ℕ of elements of ℬ(ℋ), 𝑇𝑛 → 𝑇 in the SOT
if and only if for each 𝜉 ∈ ℋ, ‖𝑇𝑛𝜉 − 𝑇𝜉‖ → 0. Slightly less straightforward is the
weak operator topology (WOT), which we define as the weakest topology on ℬ(ℋ)
such that for all 𝜉, 𝜂 ∈ ℋ, the map 𝑇 ↦ ⟨𝑇𝜉, 𝜂⟩ is continuous.

4 JOEL B. NEWMAN

We also introduce a new algebraic concept: for any subalgebra 𝒜 ⊆ ℬ(ℋ), we
define its commutant 𝒜′ to be the set of all elements of ℬ(ℋ) that commute with
every element of 𝒜; that is, 𝒜′ ≔ {𝑏 ∈ ℬ(ℋ) | ∀𝑎 ∈ 𝒜 : 𝑎𝑏 = 𝑏𝑎}. We then define
the bicommutant 𝒜″ in the obvious way: 𝒜″ = (𝒜′)′.

With these, we may now define von Neumann Algebras:

Definition 1.2.1 (von Neumann algebra). Concretely, a von Neumann Algebra is
a ∗-subalgebra of ℬ(ℋ) which is closed in either the weak or the strong operator
topology; as it so happens, these are equivalent.

Algebraically,² a von Neumann algebra is a ∗-subalgebra 𝒜 of ℬ(ℋ) which is
equal to its own bicommutant: 𝒜 = 𝒜″. Of course, this definition is also equivalent
to the others.

²In constrast to our discussion so far, von Neumann algebras are firmly a “concrete” notion –
they are not defined as universal algebras as in the abstract definition for Cstar-algebras in
Definition 1.1.1.

1.2.1. A New Order. We now introduce a relation on projections in a von Neu-
mann algebra, and a corresponding equivalence relation:

Definition 1.2.2 (Murray-von Neumann (sub-)equivalence). Let ℳ be a von
Neumann algebra. For projections 𝑝, 𝑞 ∈ ℳ, we say that 𝑝 is (Murray-von Neumann)
sub-equivalent to 𝑞 (denoted 𝑝 ≼ 𝑞) if there exists a partial isometry 𝑢 ∈ ℳ with
𝑢𝑢∗ = 𝑝 and 𝑢∗𝑢 ≤ 𝑞.

We say that 𝑝 and 𝑞 are (Murray-von Neumann) equivalent (denoted 𝑝 ≈ 𝑞) if
there exists a partial isometry 𝑢 ∈ ℳ such that 𝑢𝑢∗ = 𝑝 and 𝑢∗𝑢 = 𝑞.

Now, ≼ is not (in general) a partial order on the projections of a von Neumann
algebra; rather, it is a partial order on the ≈-equivalence classes of projections.

We call a projection 𝑝 ∈ ℳ infinite if there exists 𝑞 ∈ ℳ with 𝑞 < 𝑝 (i.e. a proper
subprojection) such that 𝑝 ≈ 𝑞.

1.2.2. Factors. Let the center of a von Neumann algebra ℳ be defined as
𝒵(ℳ) ≔ {𝑥 ∈ ℳ | ∀𝑎 ∈ ℳ : 𝑥𝑎 = 𝑎𝑥}.

With center, projections, and ≼ all defined, we can finally get to the purpose of
this discussion:

Definition 1.2.3 (factor). We call a von Neumann algebra ℳ a factor if
𝒵(ℳ) = ℂ ⋅ Idℋ.

While we term this a “factor”, we are not very interested here in factorizing von
Neumann algebras.³ Rather, we are interested in a taxonomy of factors containing
a very important type – a taxonomy enabled by the following property of factors:

³Indeed, Jones refers to said notion of factorization as “bizarre”.

Theorem 1.2.4 ([2] Theorem 6.1.8). If ℳ is a factor, then ≼ is a total order on
≈-equivalence classes.

With this defined, we can now discuss the complete classification of factors. In
[2], Sir Vaughan Jones gives a very elegant system for classifying factors using ≼

VON NEUMANN, CONNES, TURING 5

that will will repeat here. The idea is that Theorem 1.2.4 allows us to classify fac-
tors by the ≼-order type of their ≈-equivalence classes This gives us a classification
as follows:

Factor Type ≼-Order Type Is 𝐈𝐝𝓗 Infinite?
Type I𝑛 {0, 1, 2, …, 𝑛} No
Type I∞ {0, 1, 2, …, ∞} Yes
Type II1 [0, 1] No
Type II∞ [0, ∞] Yes
Type III {0, ∞} Yes

Table 1. Classification of Factors by ≼-Order Type.

Note that in Table 1, we include ∞ in the order type only when Idℋ is infinite in
the sense discussed at the end of Section 1.2.1; strictly speaking, [0, 1] and [0, ∞]
are order isomorphic, and so are {0, 1} and {0, ∞}. In the case that Idℋ is infinite,
we call the entire factor infinite.

1.2.3. Traces and 𝐼𝐼1 Factors. Having been introduced to II1 factors, we now
take another pass at the concept from another angle. A functional is a continuous/
bounded linear function from a 𝐶∗ algebra 𝒜 to ℂ. We define a trace as follows:

Definition 1.2.5 (state, trace). Given a C*-algebra 𝒜, we call a functional 𝜙…
• positive if 𝜙(𝑎∗𝑎) ≥ 0 for all 𝑎 ∈ 𝒜 (i.e. it maps positive operators to pos-

itive scalars).
• faithful if 𝜙(𝑎∗𝑎) = 0 ⇒ 𝑎 = 0 for 𝑎 ∈ 𝒜.
• a state if 𝜙 is positive and 𝜙(Idℋ) = 1.
• normal if, for 𝒜1 the operator norm unit ball of 𝒜, 𝜙 ↾𝒜1

: 𝒜1 → ℂ is con-
tinuous.

• tracial if for 𝑎, 𝑏 ∈ 𝒜, 𝜙(𝑎𝑏) = 𝜙(𝑏𝑎).

We call a normal, faithful, tracial state a trace.

Comparing Definition 1.2.5 to Definition 1.2.2 with Theorem 1.2.4 in mind, we
begin to see a clear relationship between the trace and Murray-von Neumann sube-
quivalence, particularly in a factor ℳ that admits a trace:

In this case, for two projections 𝑝, 𝑞 ∈ ℳ,
𝑝 ≈ 𝑞 ⟹ tr(𝑝) = tr(𝑢𝑢∗)

= tr(𝑢∗𝑢)
= tr(𝑞)

where 𝑢 is some partial isometry in ℳ, and
𝑝 ≼ 𝑞 ⟹ tr(𝑝) = tr(𝑢𝑢∗)

= tr(𝑢∗𝑢)
≤ tr(𝑞)

6 JOEL B. NEWMAN

where 𝑢 is, again, some partial isometry in ℳ.
Noting that the preceeding discussion also implies that an infinite factor may

not admit a trace, we have thus almost completely justified the equivalence to this
next definition, our second pass at defining type II1 factors:

Definition 1.2.6 (type II1 factor). We call any infinite dimensional factor that
admits a trace a type II1 factor.

This definition is equivalent to the definition given in Table 1.

Note that in a II1 factor, the trace is in fact unique, subject to tr(Idℋ) = 1.

1.3. The Connes Embedding Problem. We now know what a II1 factor
is, but there is still some groundwork to cover to get to the Connes Embedding
Problem in earnest.

First, we define embedding. An embedding of tracial von Neumann algebras (i.e.
von Neumann algebras and their traces) is a normal, injective ∗-homomorphism
that preserves the trace.

Our next task is to construct a very particular II1 factor.

1.3.1. Constructing the Hyperfinite 𝐼𝐼1 Factor. We call a separable von Neu-
mann algebra ℳ hyperfinite if it contains an increasing union of finite-dimensional
subalgebras whose union is WOT-dense; that is, there exists some (𝒜𝑛)𝑛 such that
𝒜𝑛 ⊆ 𝒜𝑛+1 and such that the weak closure of ⋃𝑛 𝒜𝑛 is ℳ.

We will take this definition as a hint in our quest to assemble the largest II1
factor possible.

Definition 1.3.1 (ℛ, the hyperfinite II1 factor). Let 𝑀∞(ℂ) denote the ma-
trix algebra on ℂ of infinite-dimensional matrices. For any 𝑛 ≥ 1, we may embed
𝑀2𝑛(ℂ) ↪ 𝑀∞(ℂ) diagonally as block matrices:

𝑀2𝑛(ℂ) ↪ 𝑀∞(ℂ)

𝐴 ↦
⎝
⎜⎜⎛

𝐴
0
⋮

0
𝐴
⋮

⋯
⋯
⋱⎠

⎟⎟⎞

= 𝐴 ⊗ 𝐼∞

where 𝐼∞ is the identity matrix in 𝑀∞(ℂ) and ⊗ is the Kronecker product.
Note that under this embedding, we have that for each 𝑛 ≥ 1,

𝑀2𝑛(ℂ) ⊆ 𝑀2𝑛+1(ℂ) via the diagonal embedding:
𝑀2𝑛(ℂ) ↪ 𝑀2𝑛+1(ℂ) ↪ 𝑀∞(ℂ)

𝐴 ↦ (𝐴
0

0
𝐴

) ↦

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝐴
0
0
0
⋮

0
𝐴
0
0
⋮

0
0
𝐴
0
⋮

0
0
0
𝐴
⋮

⋯
⋯
⋯
⋯
⋱⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎞

= 𝐴 ⊗ 𝐼2 = 𝐴 ⊗ 𝐼2 ⊗ 𝐼∞ = 𝐴 ⊗ 𝐼∞.

Let 𝒜∞ = ⋃𝑛 𝑀2𝑛(ℂ) ⊆ 𝑀∞(ℂ) according to the embedding given above.

VON NEUMANN, CONNES, TURING 7

Each 𝑀2𝑛(ℂ) admits a matrix trace (i.e. the sum of its diagonal elements),
which we will denote by Tr2𝑛 . Note that this trace is preserved through embed-
dings between these matrix algebras, so we may define a trace tr : 𝒜∞ → ℂ that
is normalized (in the sense that the identity has a trace of 1) by

tr : 𝒜∞ → ℂ

𝐴 ∈ 𝑀2𝑛(ℂ) ↦
1
𝑛

Tr2𝑛(𝐴).

We then use this to define an inner product ⟨⋅, ⋅⟩𝒜∞
 on 𝒜∞, by

⟨𝐴, 𝐵⟩𝒜∞
≔ tr(𝐵∗𝐴).

This allows us to take the Cauchy completion of 𝒜∞, upgrading ℋ from an inner
product space to a Hilbert space ℋ.

Now, we consider ℬ(ℋ). As 𝒜∞ is dense in ℋ, we can uniquely determine a
representation of 𝒜∞ as a subset of ℬ(ℋ) by

𝜋 : 𝒜∞ → ℬ(ℋ)
𝐴 ↦ 𝜋(𝐴)

with
𝜋(𝜉) : ℋ → ℋ

𝜂 ↦ 𝜉𝜂
identifying 𝒜∞ ⊆ ℋ. Through the following representation, we can find
𝜋(𝒜∞) ⊆ ℬ(ℋ). Finally, by taking

ℛ ≔ 𝜋(𝒜∞)″ = 𝜋(𝒜∞)
strong

= 𝜋(𝒜∞)
weak

we obtain ℛ, which we call the hyperfinite II1 factor. We identify 𝒜∞ as a subal-
gebra of ℛ.

We can see easily that 𝑀𝑛(ℂ) is always a factor; as such we can be sure that
𝐴∞ ∩ 𝒵(ℛ) = ℂ ⋅ Idℋ. By checking that the completion does not add any extra
non-ℂ ⋅ Idℋ elements to the center 𝒵(ℛ), we can then be sure that ℛ is a factor.
It is also easy enough to see that ℛ is infinite dimensional, and we have clearly
defined it to admit a trace, so ℛ is in fact a II1 factor.

By Theorem 15.1.1 in [2] (originally proven by Murray and von Neumann them-
selves), there is only one hyperfinite II1 factor up to isomorphism. Moreover, it can
be shown that ℛ embeds into any II1 factor.

1.3.2. Ultrapowers (of von Neumann algebras). For our next step, we will need
to define ultrafilters.

Definition 1.3.2 (ultrafilter). Given an arbitrary set 𝑋, an ultrafilter on 𝑋 is a
set 𝔘 ⊆ 𝒫(𝑋) that satisfies:

1. ∅ ∉ 𝔘 (nontriviality)
2. 𝑋 ⊆ 𝐵 ⊆ 𝐴 ∈ 𝔘 ⟹ 𝐵 ∈ 𝔘 (upwards closure)
3. 𝐴, 𝐵 ∈ 𝔘 ⟹ 𝐴 ∩ 𝐵 ∈ 𝔘 (downwards direction)
4. 𝐴 ∈ 𝔘 or 𝐴∁ ∈ 𝔘 for all 𝐴 ∈ 𝒫(𝑋) (completeness)

8 JOEL B. NEWMAN

We may alternatively define an ultrafilter 𝔘 on 𝑋 as a {0, 1}-valued probability
measure on 𝔘, identifiying the measure as 𝔘(𝑆) = 1 when 𝑆 ∈ 𝔘 for 𝑆 ⊆ 𝑋.

The probability measure definition suggests a natural interpretation of 𝔘 as a
probability measure in which every subset 𝑆 of 𝑋 is either 𝔘-big and occurs 𝔘-
almost always or is 𝔘-small and occurs 𝔘-almost never. This notion is instructive
for our next definition:

Definition 1.3.3 (ultralimit). Let (𝜉𝑖)𝑖∈𝐼 be a bounded sequence of complex
numbers. Then, for any ultrafilter 𝔘, there exists a unique 𝜉′ ∈ ℂ such that for
all 𝜀 > 0, {𝑖 : |𝜉′ − 𝜉𝑖| < 𝜀} ∈ 𝔘. In other words, for all 𝜀 > 0, 𝜉𝑖 is 𝜀-close to 𝜉′

for 𝔘-almost all 𝑖 ∈ 𝐼 . We call this the 𝔘-ultralimit of the sequence, and denote it
by 𝜉′ = lim𝔘

𝑖∈𝐼 𝑥𝑖.

Ultrafilters may either be principal or free. For an element 𝑎 ∈ 𝑋, the principal
ultrafilter of 𝑎 on 𝑋 is the ultrafilter 𝔘𝑎 = {𝑆 ⊆ 𝑋 : 𝑎 ∈ 𝑆}. If an ultrafilter is prin-
cipal of any element, we call if principal, and otherwise call it free. Note that for
a sequence (𝜉𝑖)𝑖∈𝐼 as above, lim

𝔘𝑖0
𝑖 = 𝜉𝑖0

. On the other hand, for a free 𝔘, lim𝔘
𝑖 𝜉𝑖

will be an accumulation point of (𝜉𝑖)𝑖∈𝐼 .
We now perform the tracial ultraproduct construction on (ℛ, tr):

Definition 1.3.4 (ℛ𝜔/𝔘). Fix some free ultrafilter 𝔘, the choice of which is ir-
relevant. Consider ℛ𝜔 = ∏𝑖∈𝜔 ℛ, the Cartesian product consisting of all 𝜔-indexed
sequences in ℛ. Then, define

ℓ∞(ℛ) ≔ {𝑥 ∈ ℛ𝜔 : sup
𝑖∈𝜔

‖𝑥(𝑖)‖ < ∞}

where ‖⋅‖ is the operator norm. If we then define a on ℓ∞(ℛ) by
‖𝑥‖ℓ∞(ℛ) ≔ sup

𝑖∈𝜔
‖𝑥(𝑖)‖

we can show that ℓ∞(ℛ) together with ‖⋅‖ℓ∞(ℛ)) is a C*-algebra.
Now, we want to define a trace on ℓ∞(ℛ). Unfortunately, tr(𝑥) ≔ lim𝔘

𝑖 tr(𝑥(𝑖))
does not work, as we may have that positive elements of ℓ∞(ℛ) (i.e., 𝑥 ∈ ℓ∞(ℛ)
such that 𝑥(𝑖) is positive for each 𝑖 ∈ 𝜔) can be such that limℛ

𝑖 tr(𝑥(𝑖)) = 0. As
such, we must define

𝑁𝔘 ≔ {𝑥 ∈ ℓ∞(ℛ) : lim
𝔘

𝑖
tr(𝑥(𝑖)) = 0}

and quotient by this (after verifying that 𝑁𝔘 is a two-sided ideal in ℓ∞(ℛ)). This
gives us ℓ∞(ℛ)/𝑁𝔘, which which we denote by ℛ𝜔/𝔘, and which happens to be a
von Neumann algebra with trace

tr([𝑥]𝑁𝔘
) ≔ lim

𝔘

𝑖∈𝜔
tr(𝑥(𝑖)).

1.3.3. The Statement. We can now finally state the Connes embedding prob-
lem:

VON NEUMANN, CONNES, TURING 9

Definition 1.3.5 (Connes Embedding Problem). The Connes Embedding Prob-
lem (CEP) states that every tracial separable von Neumann algebra embeds into
some ultrapower of the unique hyperfinite II1 factor ℛ.

It can be shown (see [1], p.519) that every tracial von Neumann algebra embeds
into a II1 factor, via a procedure that enlarges the tracial von Neumann algebra
into a II1 factor. Hence, we may take the CEP to be the statement that II1 factor
embeds into ℛ𝜅/𝔘 for some 𝜅 and 𝔘.

2. Model Theory
In general, the field of mathematics consists of choosing some mathematical ob-

ject, and then studying it by writing down provable facts. Model Theory formalizes
this fact, by fixing a formal language for constructing sentences and formualas, and
then studying the relationship between this and our model, the object itself.

In the following section, we borrow liberally from the presentation of Model
Theory given in [3].

2.1. Classical Model Theory. In the following, we will notate ̄𝑥 for a se-
quence of symbols or variables 𝑥0, 𝑥1, …, 𝑥𝑛 of arbitrary length.

2.1.1. Constants and Functions. Formally, to study a type of mathematical
object using Model Theory, we first fix a (first-order) language 𝐿, which symbols
we can use to construct various types of utterances; these utterances are given
meaning through models or 𝐿-structures, which give interpretations and allow our
utterances to describe actual mathematical objects, or be either true or false.

First-order languages 𝐿 may contain constant symbols 𝑐, each of which gets in-
terpreted in an 𝐿-structure 𝐴 as an element 𝑐𝐴 ∈ 𝐴, and function symbols 𝑓 , each
of which gets interpreted as a function 𝑓𝐴 : 𝐴 → 𝐴. We can use these language’s,
as well as the background logic’s variable symbols 𝑥0, 𝑥1, …, to construct 𝐿-terms.
Recursively applying these interpretations to an 𝐿-term 𝜏 that does not contain
variable symbols allows it to be interpreted as 𝜏𝐴 ∈ 𝐴, an element of 𝐴.

We can do much the same with terms that do contain variables by providing a
substitution, although the formal procedure is a little complicated. Model Theory
in general must always name an object to use it, so if we want to substitute the
variables ̄𝑥 in 𝐿-term 𝜏(̄𝑥) with elements ̄𝑎 ∈ 𝐴, we first name them, assigning each
𝑥𝑖 a constant symbol 𝑐𝑖; we denote the expanded language we have created by
adding these symbols 𝐿(̄𝑐). We then expand 𝐴 into an 𝐿(̄𝑐)-structure that inter-
prets each 𝑐𝑖 as 𝑎𝑖, and denote the resulting structure (𝐴, ̄𝑎). In this way, we can
interpret [𝜏(̄𝑎)]𝐴 = [𝜏(̄𝑐)](𝐴,�̄�).

In the other direction to expanding the language, when 𝐿′ is a larger language
than 𝐿 we may consider an 𝐿′-structure 𝐴′ as an 𝐿-structure by “forgetting” the
extra symbols, notating the resulting structure by 𝐴′ ↾ 𝐿.

When a subset 𝐵 of (the universe of) 𝐿-structure 𝐴 is such that 𝑐𝐴 ∈ 𝐵 for all
constant symbols 𝑐 ∈ 𝐿 and 𝑓𝐴(�̄�) ∈ 𝐵 for all function symbols 𝑓 ∈ 𝐿 and �̄� ∈ 𝐵,
then it is impossible that an 𝐿-term using interpretations from 𝐴 and parameters
in 𝐵 refers to an element outside of 𝐵, and so we can regard 𝐵 as another 𝐿-
structure with the same interpretations as 𝐴 but a smaller universe; in this case
we call 𝐵 a substructure of 𝐴, and notate it 𝐴 ≤ 𝐵.

10 JOEL B. NEWMAN

2.1.2. Relations and Formulae. 𝐿 may also contain relation symbols 𝑅, which
are interpreted in an 𝐿-structure 𝐴 as 𝑅𝐴 ⊆ 𝐴𝑛 — (𝑛-ary) relations on 𝐴. We
may construct an atomic 𝐿-formula using a relation symbol applied to 𝐿-terms, or
using the background logic’s = relation, which has a fixed interpretation as the
relation {(𝑎, 𝑎) : 𝑎 ∈ 𝐴}. When an atomic 𝐿-formula 𝜑 contains no variables, then
after interpreting it in 𝐴 we either have a true or false statement; if 𝜑 is true in 𝐴
we say 𝐴 models 𝜑, and notate this 𝐴 ⊧ 𝜑.

We may construct more complex quantifier-free 𝐿-formulae 𝜑 by combining other
quantifier-free 𝐿-formulae with logical connectives, which we interpret in the nat-
ural way. Like for terms, when an 𝐿-formula has a variable we must bind it in order
to fully interpret the formula, but we also have the option of using quantifiers.

Quantifier symbols also come from the background logic, and they work like this:
the formula (∀𝑥)𝜑(𝑥) interpreted in 𝐴 is true when 𝜑(𝑎) is true for all 𝑎 ∈ 𝐴, and
(∃𝑥)𝜑(𝑥) is true in 𝐴 when there exists 𝑎 ∈ 𝐴 such that 𝐴 ⊧ 𝜑(𝑎). A (general) 𝐿-
formula is built up from quantifier-free 𝐿-formulae only (and optionally) by adding
quantifiers. An 𝐿-formula in which every variable is bound is called an 𝐿-sentence.
We also call a formula that uses only ∀ universal and a formula that uses only ∃
existential.

2.1.3. Theories & Elementary Equivalence. When Φ is a set of 𝐿-sentences and
𝐴 an 𝐿-structure such that 𝐴 ⊧ 𝜑 for every 𝜑 ∈ Φ, we say that 𝐴 ⊧ Φ, and in general
extend most notation for formulas to sets of formulas (Φ(̄𝑥) for a set of formulas
with free variables in ̄𝑥, etc). If for all models 𝐴 such that 𝐴 ⊧ Φ we have that
𝐴 ⊧ 𝜓, we say that Φ entails 𝜓, notated Φ ⊦ 𝜓.

When 𝐴, 𝐵 are 𝐿-structures, we will notate that for all 𝜑 ∈ Φ, 𝐴 ⊧ 𝜑 ⟹ 𝐵 ⊧ 𝜑
by

𝐴 ⇛
Φ

𝐵.
If 𝐴 ⇛Φ 𝐵 and 𝐵 ⇛Φ 𝐴, then we notate this by 𝐴 ≡Φ 𝐵.

We may define the theory of 𝐿 as the set of all 𝐿-sentences, and denote this
Th(𝐿). Note that as Th(𝐿) is closed under negation, if 𝐴 ⇛Th(𝐿) 𝐵 then we must
also have 𝐴 ⇚Th(𝐿) 𝐵; in this case we notate this simply by 𝐴 ≡ 𝐵 and call the
structures elementarily equivalent.

We may also consider the universal theory of 𝐿 (Th∀(𝐿)) which consists of all
universal 𝐿-sentences, and the existential theory Th∀(𝐿), consisting of all existential
sentences. Note that when 𝐴 ≤ 𝐵, then we have that

𝐴 ⇛
Th∃(𝐿)

𝐵
as if there exists a satisfactory element in 𝐴 it must also exist in 𝐵, and

𝐴 ⇚
Th∀(𝐿)

𝐵.
as if all elements of 𝐵 are satisfactory all elements of 𝐴 are as well.

The converse does not precisely hold, but a similar statement does:

Theorem 2.1.1 ([3], Corollary 5.4.3). If 𝐴 and 𝐵 are such that

𝐴 ⇚
𝑇ℎ∀(𝐿)

𝐵

VON NEUMANN, CONNES, TURING 11

then there is a structure 𝐴′ ≥ 𝐴 such that 𝐴′ ≡ 𝐵.

Note the above notation is nontraditional; traditionally we would use Th(𝐴) to
notate the set of all 𝐿-sentences 𝜑 such that 𝐴 ⊧ 𝜑, and likewise for Th∀(𝐴) and
Th∃(𝐵). For example, instead of saying 𝐴 ⇛Th∀(𝐿) 𝐵, we’d say that 𝐵 ⊧ Th∀(𝐴).
We use the ⇛ notation so that when we get to continuous logic in Section 2.2, our
notation remains compatible.

2.1.4. Elementary Substructures & Embeddings. We say that an 𝐿-structure 𝐴
is an elementary substructure of a substructure 𝐵 (notated 𝐴 ≼ 𝐵) if for all ̄𝑎 ∈ 𝐴,

(𝐴, ̄𝑎) ≡
Th(𝐿, ̄𝑐)

(𝐵, ̄𝑎).

Confusingly, this is a much stronger notion than either the property of being a
substructure or that of elementary equivalence; 𝐴 ≤ 𝐵 and 𝐴 ≡ 𝐵 does not imply
𝐴 ≼ 𝐵, although the converse does hold.

We also introduce the concept of an embedding:

Definition 2.1.2 (embedding). For 𝐴 and 𝐵 𝐿-structures, we call an injection
𝑓 : 𝐴 → 𝐵 an embedding if it satisfies

1. 𝑓(𝑐𝐴) = 𝑐𝐵 for all constant symbols 𝑐.
2. ̄𝑎 ∈ 𝑅𝐴 ⟺ 𝑓 ̄𝑎 ∈ 𝑅𝐵 for all tuples ̄𝑎 and compatible relation symbols 𝑅.
3. 𝑓(𝑔𝐴(̄𝑎)) = 𝑔𝐵(𝑓 ̄𝑎) for all tuples ̄𝑎 and compatible function symbols 𝑔.

When 𝑓 : 𝐴 → 𝐵 is an embedding, then we may refer to the substructure 𝑓𝐴 of 𝐵.

We tie the utility of these concepts together with the following proposition:

Theorem 2.1.3 (Elementary Diagram Lemma; [3] Lemma 2.5.3). Let ̄𝑎 generate
𝐴, in the sense that any element of 𝑎 can be referred to by an 𝐿-term with para-
meters in ̄𝑎.

Then, if is 𝐵 such that

(𝐴, ̄𝑎) ⇚
𝑇ℎ(𝐿(̄𝑐))

𝐵

there is an embedding 𝑓 : 𝐴 → 𝐵 ↾ 𝐿 such that 𝑓𝐴 is an elementary substructure
of 𝐵 ↾ 𝐿.

We refer to such an embedding as an elementary embedding.

2.1.5. Types. Let 𝐴 be an 𝐿-structure, and 𝑋 a subset of (the universe of) 𝐴.
Then, for some tuple �̄� of elements of 𝐴, the complete type of �̄� over 𝑋 with respect
to 𝐴 consists of the set of all 𝐿-formulas 𝜑(̄𝑥, ̄𝑦) such that 𝐴 ⊧ 𝜑(�̄�, 𝑋). Intuitively,
this consists of everything we can say in language 𝐿 about �̄� using 𝑋 that is true
in 𝐴. We notate this by tp𝐴(�̄�/𝑋). More generally, for 𝑝(̄𝑥) a set of formulas in
the variables ̄𝑥, we say that 𝑝(̄𝑥) is a complete type of �̄� over 𝑋 if it is a complete
type of �̄� over 𝑋 with respect to 𝐵, where 𝐵 is some elementary extension of 𝐴.

We then call any subset of a complete type over 𝑋 (with respect to 𝐴) a type
over 𝑋 (with respect to 𝐴). We say that a type Φ(̄𝑥) is realized by a tuple �̄� in 𝐴 if
Φ ⊆ tp𝐴(�̄�/𝑋), and if Φ is not realized by any tuple in 𝐴 we say that 𝐴 omits Φ.

With this, with state without proof a very important theorem about types:

12 JOEL B. NEWMAN

Theorem 2.1.4 ([3], Theorem 5.2.1). For 𝛷(̄𝑥) a set of 𝐿-formulas with parame-
ters from 𝑋 ⊆ 𝐴, where 𝐴 is an 𝐿-structure, 𝛷(̄𝑥) is a type over 𝑋 with respect to
𝐴 if and only if 𝛷 is finitely realized in 𝐴. Moreover, 𝛷(̄𝑥) is a complete type over
𝑋 with respect to 𝐴 if and only if 𝛷 is maximal (with respect to inclusion) with the
property that it is finitely realized in 𝐴.

2.1.6. Saturation and Ultrapowers. With the concept of types under our belt,
we can introduce 𝜆-saturated 𝐿-structures. Informally, a 𝜆-saturated 𝐿-structure
is one that is “large” enough to contain any element that we can describe using
fewer than 𝜆 of its elements. Formally:

Definition 2.1.5 (𝜆-saturated 𝐿-structure). We call a 𝐿-structure 𝐴 𝜆-saturated
if for all subsets 𝑋 ⊆ 𝐴 with |𝑋| < 𝜆, all complete types Φ(𝑥) over 𝑋 with respect
to 𝐴 are realized by elements of 𝐴.

If an 𝐿-structure 𝐴 is |𝐴|-saturated, we simply call it saturated.

How do we obtain such a structure? As it turns out, using another (recall Sec-
tion 1.3.2) thing called an ultrapower!

Definition 2.1.6 (ultrapower of an 𝐿-structure). Let 𝐴 be an 𝐿-structure, and
𝐼 an index set. We will construct the ultrapower step-by-step.

First, we construct the direct power 𝐴𝐼 as the set of all 𝐼-indexed se-
quences (which we will treat as maps 𝐼 → 𝐴). Letting 𝜑(̄𝑥) be a 𝐿-formula and
(𝑎0, 𝑎1, 𝑎2, …) = ̄𝑎 a tuple in 𝐴𝐼 , we notate ‖𝜑(̄𝑎)‖ ≔ {𝑖 ∈ 𝐼 : 𝐴 ⊧ 𝜑(̄𝑎(𝑖))}, where
̄𝑎(𝑖) = (𝑎0(𝑖), 𝑎1(𝑖), 𝑎2(𝑖), …). We call this the boolean value of 𝜑(̄𝑎).
Next, we take some ultrafilter 𝔘 (recall Definition 1.3.2) and define an equiva-

lence relation ~𝔘 on 𝐴𝐼 by 𝑎 ~𝔘 𝑏 ⟺ ‖𝑎 = 𝑏‖ ∈ 𝔘. We denote the equivalence class
of 𝑎 ∈ 𝐴𝐼 by 𝑎/𝔘.

Finally, we define the ultrapower as

𝐴𝐼/𝔘 ≔ {𝑎/𝔘 : 𝑎 ∈ 𝐴𝐼}

where we interpret symbols as follows:
1. for a constant symbol 𝑐,

𝑐𝐴𝐼/𝔘 = (𝑐𝐴𝑖 : 𝑖 ∈ 𝐼)/𝔘
2. for a function symbol 𝑓 ,

𝑓𝐴𝐼/𝔘(𝑎0/𝔘, …, 𝑎𝑛−1/𝔘) = (𝑓𝐴𝑖(̄𝑎(𝑖)) : 𝑖 ∈ 𝐼)/𝔘
3. for a relation symbol 𝑅,

(𝑎0/𝔘, …, 𝑎𝑛−1/𝔘) ∈ 𝑅𝐴𝐼/𝔘 ⟺ ‖𝑅(̄𝑎)‖ ∈ 𝔘.

Defining it in this way, we obtain that 𝐴𝐼/𝔘 ⊧ 𝜑(̄𝑎) if and only if ‖𝜑(̄𝑎)‖ ∈ 𝔘, by a
theorem of Łoś.

The resemblance to the construction in Section 1.3.2 is not in name only, and
the analogy between the two will be further deepened in Section 2.2.

Regardless, if we choose the ultrafilter in the above definition precisely, we can
have our desired saturated models:

VON NEUMANN, CONNES, TURING 13

Theorem 2.1.7 ([4] and [5] 10.5, as cited in [6] Theorems 4 and 5). Let 𝐿 be
a first-order language with |𝐿| ≤ 𝜅 (that is, that names fewer than 𝜅 symbols in
total). Let 𝐴 be a 𝐿-structure. Then there exists an ultrafilter 𝔘 on 𝜅 such that the
ultrapower 𝐴𝐼/𝔘 is 𝜅+-saturated.

2.1.7. Frayne’s Theorem. We finish with the following theorem:

Theorem 2.1.8 (Frayne’s Theorem; [3] Section 8.5, Exercise 8). Two 𝐿-struc-
tures 𝐴 and 𝐵 are elementarily equivalent if and only if there exists an embedding
𝑓 such that 𝑓𝐴 is an elementary substructure of some ultrapower 𝐵𝐼/𝔘.

Proof. In the following, we will say that an 𝐿-formula 𝜑(̄𝑥) is absolute between
𝑀 and 𝑁 where 𝑀 ≤ 𝑁 if for every ̄𝑎 ∈ 𝑀 , we have that 𝑀 ⊧ 𝜑(̄𝑎) ⟺ 𝑁 ⊧ 𝜑(̄𝑎);
letting ̄𝑎 generate 𝑀 , this is equivalent to saying that (𝑀, ̄𝑎) ≡𝜑(̄𝑐) (𝑁, ̄𝑎).

Let 𝐼 be some index set, 𝔘 an ultrafilter, and 𝑓 : 𝐴 → 𝐵𝐼/𝔘 an elementary em-
bedding (i.e., an embedding such that 𝑓𝐴 ≼ 𝐵). Taking ̄𝑎 to be the empty 0-tuple,
by definition of elementary embedding we have that for all sentences 𝜙 of 𝐿,

𝐴 ⊧ 𝜙 ⟺ 𝐵𝐼/𝔘 ⊧ 𝜙

and so clearly 𝐴 ≡ 𝐵𝐼/𝔘. Similarly, as the diagonal embedding 𝑒 : 𝐵 → 𝐵𝐼/𝔘 is
an elementary embedding, we have that 𝐵𝐼/𝔘 ≡ 𝐵 and so 𝐴 ≡ 𝐵.

Let 𝐴, 𝐵 be 𝐿-structures such that 𝐴 ≡ 𝐵. Choose some sequence ̄𝑎 of 𝐴 that
generates 𝐴 of length 𝜅. Using Theorem 2.1.7, we choose some ultrafilter 𝔘 such
that 𝐵𝜅/𝔘 is 𝜅+-saturated. I claim that there exists ̄𝑑 in 𝐵𝜅/𝔘 of length 𝜅 such that

(𝐴, ̄𝑎) ≡ (𝐵𝜅/𝔘, ̄𝑑)

as 𝐿(̄𝑐)-structures.
I will prove this by induction, and will show that for each 𝜄 ≤ 𝜅,

(𝐴, ̄𝑎 ↾ 𝜄) ≡ (𝐵𝜅/𝔘, ̄𝑑 ↾ 𝜄)

as 𝐿(̄𝑐 ↾ 𝜄)-structures.
In the zero case, we have that 𝐴 ≡ 𝐵 and we have previously established

that Th(𝐵) = Th(𝐵𝜅/𝔘) using the diagonal embedding. As such, we have that
Th(𝐴) = Th(𝐵) = Th(𝐵𝜅/𝔘) and so 𝐴 ≡ 𝐵𝜅/𝔘.

In the step case, we assume that we have (𝐴, ̄𝑎 ↾ 𝜄) ≡ (𝐵𝜅/𝔘, ̄𝑑 ↾ 𝜄). We then let
Φ(̄𝑥, 𝑦) be the complete type of 𝑎𝜄 over ̄𝑎 ↾ 𝜄, in the sense that for all 𝐿-formulas
𝜙(̄𝑥, 𝑦) such that 𝐴 ⊧ 𝜙(̄𝑎 ↾ 𝜄, 𝑎𝜄), 𝜙 ∈ Φ. Now, let Ψ be an arbitrary finite subset
of Φ, and consider the 𝐿-formula

∃𝑦 ⋀
𝜓∈Ψ

𝜓(̄𝑥 ↾ 𝜄, 𝑦)

which we will denote as 𝜌Ψ(̄𝑥). Let 𝜎Ψ be the 𝐿(̄𝑐 ↾ 𝜄)-sentence obtained by replac-
ing each occurrence of 𝑥𝜂 with the constant symbol 𝑐𝜂 for 𝜂 < 𝜄. We can clearly
see that 𝐴 ⊧ 𝜌Ψ(̄𝑎 ↾ 𝜄) and thus that (𝐴, ̄𝑎 ↾ 𝜄) ⊧ 𝜎Ψ for each finite Ψ ⊆ Φ, and so as
(𝐴, ̄𝑎 ↾ 𝜄) ≡ (𝐵𝜅/𝔘, ̄𝑑 ↾ 𝜄), we have that (𝐵𝜅/𝔘, ̄𝑑) ⊧ 𝜎Ψ. We thus have that

𝐵𝜅/𝔘 ⊧ 𝜌Ψ(̄𝑑 ↾ 𝜄)

14 JOEL B. NEWMAN

for each finite Ψ ⊆ Φ. We thus have that 𝐵𝜅/𝔘 finitely realizes Φ(̄𝑥, 𝑦) over ̄𝑑 ↾ 𝜄 and
thus that Φ(̄𝑥, 𝑦) is a type over ̄𝑑 ↾ 𝜄 with respect to 𝐵𝜅/𝔘 by Theorem 2.1.4. Now,
as 𝐵𝜅/𝔘 is 𝜅+-saturated and 𝜄 ≤ 𝜅 < 𝜅+, we have that 𝐵𝜅/𝔘 realizes this type,
and so there exists an element of 𝐵𝜅/𝔘 we denote by 𝑑𝜄 such that for all 𝜙 ∈ Φ,
𝐵𝜅/𝔘 ⊧ 𝜙(̄𝑑 ↾ 𝜄, 𝑑𝜄). We thus have that every 𝐿(𝑐 ↾ 𝜄 + 1)-sentence is absolute be-
tween 𝐴 and 𝐵𝜅/𝔘 and so (𝐴, ̄𝑎 ↾ 𝜄 + 1) ≡ (𝐵𝜅/𝔘, ̄𝑑 ↾ 𝜄 + 1).

In the limit case, we let 𝜙 be an arbitrary 𝐿(̄𝑐 ↾ 𝜆)-sentence, where 𝜆 ≤ 𝜅 is
a limit ordinal. As 𝜙 is finitely long, it uses only finitely many constant sym-
bols, and so there exists a greatest 𝜄 < 𝜆 such that 𝑐𝜄 is in 𝜙. But then 𝜙 is a
𝐿(̄𝑐 ↾ 𝜄 + 1)-sentence, and as we assume that (𝐴, ̄𝑎 ↾ 𝜄 + 1) ≡ (𝐵𝜅/𝔘, ̄𝑑 ↾ 𝜄 + 1) by
our induction hypothesis, we have that 𝜙 must be absolute between (𝐴, ̄𝑎 ↾ 𝜄 + 1)
and (𝐵𝜅/𝔘, ̄𝑑 ↾ 𝜄 + 1).

We thus have completed the induction, and thus proven the claim. Immediately
from Theorem 2.1.3 we obtain that as ̄𝑎 generates 𝐴, that 𝐴 is elementarily em-
beddable into 𝐵𝜅/𝔘. □

We use this to obtain a completely unmotivated corollary, whose importance will
only become obvious in Section 4.1:

Corollary 2.1.9. Let 𝐴 and 𝐵 be two 𝐿-structures. Then

𝐴 ⇚
𝑇ℎ∀(𝐿)

𝐵
if and only if 𝐴 is embeddable into an ultrapower of 𝐵.

Proof. First, assume that 𝐴 ⇚Th∀(𝐿) 𝐵. Then Theorem 2.1.1 gives that 𝐴 is a
substructure of some 𝐿-structure 𝐴′ such that 𝐴′ ≡ 𝐵. Then, Theorem 2.1.8 gives
that there is an elementary embedding 𝑓 : 𝐴 → 𝐵𝐼/𝔘 for some index set 𝐼 and
ultrafilter 𝔘.

We can then embed 𝐴 into 𝐴′ using the inclusion 𝑖 : 𝐴 → 𝐴′, and so
𝑓𝑖 : 𝐴 → 𝐵𝐼/𝔘 is an embedding of 𝐴 into an ultrapower of 𝐵.

On the other hand, if 𝑓 : 𝐴 → 𝐵𝐼/𝔘 is an embedding, then we have that

𝐴 ⇚
Th∀(𝐿)

𝐵𝐼/𝔘 ≡ 𝐵

and so

𝐴 ⇚
Th∀(𝐿)

𝐵.
□

2.2. Continuous Model Theory. For studying C* and von Neumann algebras,
we consider a kind of continuous logic and its corresponding continuous Model
Theory. What this means is that rather than giving each well-formed sentence in
our logic a truth value (i.e. evaluating it as either true or false), each attains some
real number value when evaluated in a model.

2.2.1. Goldbring and Hart’s Continuous Logic. We briefly review the continu-
ous logic as presented in [1] for studying tracial von Neumann algebras.

VON NEUMANN, CONNES, TURING 15

Definition 2.2.1 (𝐿vNa). For a von Neumann algebra ℳ, let ℳ1 denote the oper-
ator norm unit ball (i.e. ℳ1 ≔ {𝑥 ∈ ℳ | ‖𝑥‖ ≤ 1}). We will refer to any expression
built from indeterminates 𝑥1, 𝑥2, …, 𝑥𝑛 using addition, multiplication, subtraction,
multiplication, and ∗ as a ∗-polynomial.

• Let ℱ denote the set of all ∗-polymomials 𝑝(𝑥1, …, 𝑥𝑛) with 𝑛 ≥ 0 such
that for any von Neumann algebra ℳ, 𝑝(ℳ𝑛

1) ⊆ ℳ1.
• Our formal language will be 𝐿vNa = 𝐹 ∪ {trℜ, trℑ, 𝑑}, where trℜ and trℑ

are the real and imaginary parts of the trace on ℳ, respectively, and 𝑑 is
the metric 𝑑(𝑎, 𝑏) = ‖𝑎 − 𝑏‖tr = √⟨𝑎 − 𝑏, 𝑎 − 𝑏⟩tr = tr((𝑎 − 𝑏)∗(𝑎 − 𝑏)).

• A basic 𝐿vNa-formula will be of the form trℜ(𝑝(̄𝑥)), trℑ(𝑝(̄𝑥)), or
𝑑(𝑝(̄𝑥), 𝑞(̄𝑥)) for 𝑝, 𝑞 ∈ ℱ.

• A quantifier-free 𝐿vNa-formula is of the form 𝑓(𝜑1, …, 𝜑𝑚) where
𝑓 : ℝ𝑚 → ℝ is a continuous function and 𝜑1, …, 𝜑𝑚 are basic 𝐿vNa-formu-
lae.

• A general 𝐿vNa-formula will be of the form

(𝑄1
𝑥𝑖1

)⋯(𝑄𝑘
𝑥𝑖𝑘

)𝜑(𝑥1, …, 𝑥𝑛)

where each 𝑖𝑗 ∈ {1, …, 𝑛}. 𝜑(𝑥1, …, 𝑥𝑛) is a quantifier-free 𝐿vNa-formula,
and each 𝑄𝑖 is either sup or inf.

We call any 𝐿vNa-formula in which there are no free variables a 𝐿vNa-sentence.

For any 𝐿vNa-formula 𝜑(𝑥1, …, 𝑥𝑛), von Neumann algebra ℳ, and ̄𝑎 ∈ ℳ𝑛
1 , we

may evaluate 𝜑(̄𝑎)ℳ to be the real number obtained by replacing the variables ̄𝑥
with the values ̄𝑎; this real number valuation takes the place of the truth value
that would be obtained in a classical logic.

2.2.2. Relating Continuous and Classical Logic. We will for the most part avoid
working directly in continuous logic or our continuous model theory, for the simple
reason that it is infernally finnicky and irritating to formalize. Thankfully, most
results carry over directly, once we fix an analogy between the two systems.

The basic concept in this relationship is this, and I will emphasize it since it is
counterintuitive: in continuous logic, we will in general replace the notion of 𝐴 ⊧ 𝜑
with 𝜑ℳ = 0; that is we will take a sentence to be satisfied by a model when its
evaluation in that model is zero – especially when the sentence has nonnegative
range. In fact, we will use ℳ ⊧ 𝜑 and the like to notate that 𝜑ℳ = 0.

We then consider a 𝐿vNa-sentence with positive range 𝜑 universal when it is
“quantified” only by sup, and existential when quantified only by inf. This means
that a universal 𝐿vNa-sentence (sup𝑥𝑖1

)⋯(sup𝑥𝑖𝑛
)𝜑(̄𝑥) (where 𝜑 is quantifier-free)

is satisfied only when 𝜑ℳ(̄𝑎) = 0 for all ̄𝑎 ∈ ℳ, and likewise for existential sen-
tences.

We also will expand our ⇛ notation; we will use ℳ ⇛Φ 𝒩 to notate that for
all 𝐿vNa-sentences 𝜑, 𝜑ℳ ≥ 𝜑𝒩. Note that through our analogy, this implies the
same thing that ⇛ meant for classical model theory: if ℳ ⊧ 𝜑 and so 𝜑ℳ = 0, then
0 ≤ 𝜑𝒩 ≤ 𝜑ℳ ≤ 0 and so 𝜑𝒩 = 0 and 𝒩 ⊧ 𝜑.

16 JOEL B. NEWMAN

Again, this notation is nontraditional; the usual notation is that Th(ℳ) is a
function from Th(𝐿vNa) (as we have defined it) to ℝ, and likewise for Th∀ and Th∃.
We would then state something like

ℳ ⇛
Th∀(𝐿vNa)

𝒩
by Th∀(ℳ) ≥ Th∀(𝒩), to mean that the former function is always greater than
the latter one. We will prefer this notation to the ⇛ one for the purpose of saving
space, but make sure to recall the connection between the two, as it allows us to
interpret our classical model theory results in the continuous case.

Under this identification, nearly all of the results that we have stated in the
previous section still hold. In particular, Frayne’s Theorem (Theorem 2.1.8) and its
corrolary (Corollary 2.1.9) which will be important later. Moreover, many opera-
tor-algebraic properties are identical to model-theoretic properties. It is easy to see
that a 𝐿vNa-substructure is the same as a ∗-subalgebra of a tracial von Neumann
algebra that preserves that trace. Moreover, an embedding of tracial von Neumann
algebras is injective, a ∗-homomorphism (and so preserves interpretations of ∗-
polynomials), and is trace-preserving (and so preserves interpretations of trℜ, trℑ,
and 𝑑); thus, it is also an embedding of 𝐿vNa-structures.4 Of course, not all results

4That it preserves the trace also ensures that it is an isometry with regard to the operator
norm, as the operator norm we use in 𝐿vNa-structures is actually derived from a representation
of the von Neumann algebra using the trace.

remain — for example 𝐴 ⇛Th(𝐿) 𝐵 implies 𝐴 ≡ 𝐵 for classical 𝐿-structures but
ℳ ⇛Th(𝐿) 𝒩 does not imply the same for tracial von Neumann algebras, it instead
implies Th(𝐴) ≥ Th(𝐵) — so some care must be taken, but many do.

2.2.3. Ultrapowers. Which brings us to ultrapowers. We have seen two different
things called ultrapowers in this paper: the ultrapower of the hyperfinite II1 factor
(which we will heretofore notate as ℛ𝔘), given in Definition 1.3.4, and ultrapowers
of models, given above in Definition 2.1.6. The former starts by taking ℛ𝜔, the 𝜔
-indexed sequences of ℛ, prunes it to bounded sequences with ℓ∞(ℛ), and then
reduces it by quotienting out 𝑁𝔘, the elements of ℓ∞(ℛ) that would have zero trace
under the natural trace definition we obtained with 𝔘-ultralimits. The latter starts
by taking 𝐴𝐼 , the 𝐼-indexed sequences of 𝐴, then quotients it by the ∼𝔘 equivalence
relation, which says that 𝑎 ∼𝔘 𝑏 if ‖𝑎 = 𝑏‖ ∈ 𝔘.

As it turns out, under our analogy between continuous and classical model the-
ory (subject to a little bookkeeping), these processes are identical; we take the
ultrapower ℳ𝔘 in the continuous model theory sense in the same way we took the
ultrapower ℛ𝔘.

2.2.4. Soundness and Completeness. The last thing that we note is that there
is a sound and complete proof system for 𝐿vNa. Recalling the concept of entailment,
in classical logic for a language 𝐿, a proof system would be a set of rules that can be
used to generate “proofs” of finite length for statements of the form Ψ ⊦ 𝜑, where 𝜑
is an 𝐿-sentence and Ψ is a finite collection of 𝐿-sentences. Soundness would mean
that there only exists valid proofs for statements that are true; completeness would
mean that every true statement has a proof.

VON NEUMANN, CONNES, TURING 17

In continuous logic, entailment works the way you would expect from the analogy
between the systems; Ψ ⊦ 𝜑 where Ψ and 𝜑 are 𝐿vNa-sentences if for every ℳ such
that ℳ ⊧ Ψ (i.e. 𝜓ℳ = 0 for all 𝜓 ∈ Ψ), ℳ ⊧ 𝜑 (i.e. 𝜑ℳ = 0). Soundness is also
straightforward; if there exists ℳ with ℳ ⊦ Ψ such that 𝜑ℳ ≠ 0, then we should
not be able to prove Ψ ⊦ 𝜑. Completeness, on the other hand, is less straightfoward,
and we will revisit in in Section 4.2.1.

3. Computational Complexity
In this section we will briefly develop the basic notions of Computational Com-

plexity Theory, then proceed to define the classes we are concerned with in a way
highly specialized to our current task. We also briefly discuss the way that Mathe-
matical Quantum Physics is modeled through von Neumann algebras as it becomes
relevant.

3.1. Modeling Computing. We briefly discuss the basics of how we model
and study computation, and introduce one very important definition.

3.1.1. Turing Machines. The Turing machine is probably the most canonical
model of computing. We will not spend too much time on them, except to say that
they a string as input and may in a finite number of steps return a string as output,
or otherwise continue forever without halting. We may also permit the machine
to emit an output multiple times without halting in some cases. Any definition of
general computing you can think of will probably be equivalent.5

5In fact, this is known as the Church-Turing thesis.

3.1.2. Languages & Complexity. A set of strings over some finite alphabet (or
equivalently a subset of ℕ) 𝐋 is known as a language. We arrange languages into
classes depending on their complexity, which is a broad term that usually boils
down to “how hard is it to prove whether or not a string is in this language?” Our
first complexity class is as follows:

Definition 3.1.1 (𝖱). A language 𝐋 is called recursive or decidable and is in 𝖱 if
there exists a Turing machine 𝑴 that can decide 𝐋, i.e. answer the question “is
𝑧 ∈ 𝐋?” correctly and in finite time for any string 𝑧.

The canonical example of a language not in 𝖱 is 𝐇𝐚𝐥𝐭, which includes only those
strings which code for Turing machines that halt (by which we mean halt when
given an empty string as their input). The problem of finding a Turing machine
that decides 𝐇𝐚𝐥𝐭 is known as the halting problem, and it is known to be impossible.
An intuitive reason for this is that its in some sense “cheating” – solving the halting
problem would also solve nearly any math problem with a “yes/no” answer, as you
could simply detect whether a program that searches for proofs of “yes” ever finds
one. The actual formal reason is that it creates a paradox: if 𝑯 solves the halting
problem, then what happens when 𝑨 is programmed to run 𝑯 on 𝑨’s own code
and then do the opposite of what 𝑯 says 𝑨 will do?

To house 𝐇𝐚𝐥𝐭, we define another class:

Definition 3.1.2 (𝖱𝖤). A language 𝐋 is called recursively enumerable and is a
member of 𝖱𝖤 if there is a Turing machine 𝑴 that always answers the question “is

18 JOEL B. NEWMAN

𝑧 ∈ 𝐋” correctly when it halts, but that is only bound to halt and return a result
in the case that 𝑧 ∈ 𝐋.

Clearly 𝐇𝐚𝐥𝐭 ∈ 𝖱𝖤 as we can achieve the above by simply running the machine
coded by 𝑧 until it halts.

3.1.3. Efficiency. Computational complexity is not just interested in com-
putability but also in how efficient the computation is. Rather than use absolute
numbers, we usually model efficiency mathematically in terms of scaling – how fast
the number of instructions scales with the length of the input. For a Turing ma-
chine 𝑴 , if there exists some polynomial 𝑝(𝑛) such that the number of instructions
before halting when given input 𝑧 is less than 𝑝(|𝑧|), we say that 𝑴 runs in time
polynomial in 𝑧, and we say this even if 𝐌 is passed additional inputs other than
𝑧 at the start. When 𝑧 is clear, we simply say that 𝑴 runs in polynomial time.

3.2. Interactive Proofs and Games. We will formalize our relevant com-
plexity classes directly in terms of nonlocal games.

Definition 3.2.1 (nonlocal game, strategy, value). A game with 𝐿 players, 𝑛
questions, and 𝑘 answers consists of a pair 𝔊 = (𝜋, 𝐷), where 𝜋 is a probability
distribution on [𝑘]𝐿 = {1, …, 𝑘} × ⋯{1, …, 𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿 times

, and 𝐷 : ([𝑘] × [𝑛])𝐿 → {0, 1}.

Conceptually, this represents a protocol in which a party 𝑽 we call the verifier
randomly chooses one of 𝑘 questions to ask each of the players (or, alternatively,
provers) who we denote by 𝔓ℓ, ℓ ∈ [𝐿]. Say that 𝑽 sends each 𝔓ℓ the question
𝑞ℓ ∈ [𝑘]. Then, each 𝔓ℓ chooses a response 𝑎ℓ ∈ [𝑛]. Based on these responses, the
players collectively “win” if 𝑽 decides their answers are satisfactory, which is de-
termined by 𝐷(𝑞1, 𝑎1, …, 𝑞ℓ, 𝑎ℓ). If the value is 1, they win; otherwise, they lose.

A (general) strategy for a nonlocal game is a conditional probability
𝑝((𝑎ℓ)ℓ∈[𝐿] | (𝑞ℓ)ℓ∈[𝐿]) which gives a probability that for each ℓ ∈ [𝐿], when 𝔓ℓ is
asked 𝑞ℓ it responds with 𝑎ℓ. In general strategies, players are allowed full commu-
nication, whence a multiplayer nonlocal game is not such a useful concept on its
own.6 It will only become useful when we restrict communication through stricter
conditions on strategies.

Before that we do that, however, we will finish this definition with our model for
the interaction of strategies with games. The expected value of strategy 𝑝 on game
𝔊, is defined as

val(𝔊, 𝑝) ≔ ∑
(𝑞ℓ)ℓ∈[𝑛]𝐿

𝜋((𝑞ℓ)ℓ∈𝐿) ∑
(𝑎ℓ)ℓ∈[𝑘]𝐿

𝐷(𝑞1, 𝑎1, …, 𝑞𝐿, 𝑎𝐿)𝑝((𝑎ℓ)ℓ∈[𝐿] | (𝑞ℓ)ℓ∈𝐿)

and conceptually gives the probability that the players win 𝔊 when using strategy
𝑝.

6If 𝐿 provers are allowed full communication, they are working together towards precisely the
same goal and so behave as one prover.

To see how this relates to the concept of computability, consider the following
imaginary situation: verifier 𝑽 wants to efficiently determine whether any given
string 𝑧 ∈ 𝐋. It has access to a very powerful, oracle-like entity known only as 𝔓.

VON NEUMANN, CONNES, TURING 19

While 𝑽 is a lowly Turing machine, 𝔓 has no computational bounds at all, and
will readily answer any questions 𝑽 has. The problem is that 𝔓 is only interested
in “winning” and will try to convince 𝑽 that 𝑧 ∈ 𝐋 whether or not it actually is.
The challenge for 𝑽 is to use 𝔓’s miraculous capabilities to determine the truth,
using its own limited computational ability to check its work. With this in mind,
we connect nonlocal games to this computational challenge with the following de-
finition:

Definition 3.2.2 (efficient mapping). For any fixed finite alphabet and a fixed
number of players, we that a mapping 𝑧 ↦ 𝔊𝑧 = (𝜋𝑧, 𝐷𝑧) from strings to nonlocal
games is efficient if the following two conditions hold:

1. There is a Turing machine 𝑽1 that efficiently implements 𝑧 ↦ 𝜋𝑧, in the
sense that given the string 𝑧 and a random string 𝑟, it can, in time
polynomial in |𝑘|, generate 𝐿 questions 𝑞1, …, 𝑞𝐿 in such a way that the
distribution of questions when fixing 𝑧 is identical to that given by 𝜋𝑧.

2. There is Turing machine 𝑽2 that efficiently implements 𝑧 ↦ 𝐷𝑧, in the
sense that, when given 𝑧, the questions (𝑞ℓ)ℓ∈𝐿, and the answers (𝑎ℓ)ℓ∈𝐿,
it can, in time polynomial in |𝑧|, output 𝐷𝑧(𝑞1, 𝑎1, …, 𝑞𝐿, 𝑎𝐿).

The scenario described above is modeled (informally) by setting 𝐿 = 1 and al-
lowing the prover to use any strategy. We call it an interactive proof system, and
the complexity class of all problems that can be probabilistically verified this way
(or with an extended definition permitting multiple rounds of back-and-forth ques-
tions and answers) is denoted 𝖨𝖯. A canonical example is the graph isomorphism
problem with language 𝐈𝐬𝐨𝐆𝐫𝐚𝐩𝐡. Given two graphs 𝐺1, 𝐺2 with an equal number
of vertices and edges, it can be computationally intensive to determine whether the
graphs are isomorphic (meaning that they are the same up to relabeling nodes) but
there is an interactive proof verifiable in polynomial time. 𝑽 randomly chooses one
of the two graphs 𝐺𝑖, shuffles its node labels randomly to get 𝐺′, and then shows
it to 𝔓, asking whether 𝐺′ is a shuffled copy of 𝐺1 or of 𝐺2. When 𝐺1 and 𝐺2
are not isomorphic, 𝔓 will be able to immediately determine which of the two was
shuffled to get 𝐺′, but when they are isomorphic 𝔓 will have to guess; thus, 𝑽 can
use 𝔓’s performance at this guessing game as a probabilistic proof of membership
in 𝐈𝐬𝐨𝐆𝐫𝐚𝐩𝐡.

3.2.1. Multiple Interactive Provers. The 𝖬𝖨𝖯-protocol is much like the scenario
described above, except that it has two players who are not allowed to coordinate. In
order to model this we introduce a new restriction on strategies: a 2 player, 𝑛-ques-
tion, 𝑘-answer strategy 𝑝 is called deterministic if there are functions 𝑃ℓ : [𝑛] → [𝑘],
ℓ ∈ {1, 2} such that 𝑝(𝑃1(𝑞1), 𝑃2(𝑞2) | 𝑞1, 𝑞2) = 1 for all (𝑞1, 𝑞2) ∈ [𝑛]2. We denote
the set of deterministic strategies with these parameters by 𝐶det(𝑛, 𝑘) ⊆ [0, 1]𝑛

2𝑘2
.

We then say that the classical value of the game 𝔊 is
val(𝔊) ≔ sup

𝑝∈𝐶det(𝑛,𝑘)
val(𝔊, 𝑝).

We can then define 𝖬𝖨𝖯 as follows:

Definition 3.2.3 (𝖬𝖨𝖯). A language 𝐋 belongs to complexity class 𝖬𝖨𝖯 if there
is an efficient mapping 𝑧 ↦ 𝔊𝑧 such that:

20 JOEL B. NEWMAN

• If 𝑧 ∈ 𝐋, then val(𝔊𝑧) ≥ 2
3 .

• If 𝑧 ∉ 𝐋, then val(𝔊𝑧) ≤ 1
3 .

We fix 𝐿 = 2 in the above definition as it turns out that analogous definitions
but with more than two players will result in the same class. As such, from here
on out we only consider 2-player games.

3.2.2. Multiple Interactive Provers, Star. We now introduce a new kind of
strategy, and we start with a little bit of quantum physics. We can represent phys-
ical systems as Hilbert spaces, by ℋ. Any state the system can be in is an element
𝜉 ∈ ℋ. To measure the system, say that the measurement has 𝑚 ∈ ℕ possible out-
comes. To represent this measurement, we fix a collection of projections7 (𝑃𝑖)𝑖∈[𝑚]

7We actually usually allow these to be positive operators, but restricting to projections is
sufficient for our purposes.

in ℋ such that ∑𝑚
𝑖=1 𝑃𝑖 = Idℋ, and say that the probability that outcome 𝑖 ∈ [𝑚]

occurs is equal to ⟨𝑃𝑖𝜉, 𝜉⟩. This is called a projection-valued measure (PVM), as we
can can consider it as specifying a measure {𝑖1, …, 𝑖𝑙} ↦ ∑𝑙

𝑗=1 𝑃𝑖.
To consider the composite system of ℋ𝐴 and ℋ𝐵, we turn to ℋ𝐴 ⊗ ℋ𝐵. For

𝜉𝐴, 𝜂𝐴 ∈ ℋ𝐴, 𝜉𝐵, 𝜂𝐵 ∈ ℋ𝐵, the presence of elements like 𝜉𝐴 ⊗ 𝜉𝐵 + 𝜂𝐴 ⊗ 𝜂𝐵 in
this space models quantum entanglement. We then can model two scientists, Al-
ice and Bob, measuring physically separated but potentially entangled systems by
fixing a state 𝜉 ∈ ℋ𝐴 ⊗ ℋ𝐵, a PVM (𝑃𝑖)𝑖∈[𝑚𝐴] on 𝐴, and a PVM (𝑄𝑗)𝑗∈[𝑚𝐵]

 on
𝐵, and saying that the probability of Alice receiving outcome 𝑖 ∈ [𝑚𝐴] and Bob
recieving outcome 𝑗 ∈ [𝑚𝐵] after they perform their respective measurements is
⟨𝑃𝑖 ⊗ 𝑄𝑗𝜉, 𝜉⟩.

We use these to develop quantum strategies, which represent a situation in which
two players are not permitted to communicate but are granted entangled particles
whose measurements they may use to coordinate.

Definition 3.2.4 (quantum strategy, entangled value, 𝖬𝖨𝖯*). We will call a
2-player 𝑛-question, 𝑘-answer strategy 𝑝 a quantum strategy if there are fi-
nite dimensional Hilbert spaces ℋ𝐴, ℋ𝐵, 𝜉 ∈ ℋ𝐴 ⊗ ℋ𝐵, a collection of PVMs
(𝑃 (𝑞)

𝑎)
𝑎∈[𝑘]

, 𝑞 ∈ [𝑛] on ℋ𝐴, and a collection of PVMs (𝑄(𝑞)
𝑎)

𝑎∈[𝑘]
, 𝑞 ∈ [𝑛] on ℋ𝐵

such that

𝑝(𝑎1, 𝑎2 | 𝑞1, 𝑞2) = ⟨𝑃 (𝑞1)
𝑎1

⊗ 𝑄(𝑎2)
𝑞2

𝜉, 𝜉⟩.

We can think about this as 𝑞ℓ telling 𝔓ℓ which measurement to perform, and then
responding with answer 𝑎ℓ if they get the 𝑎ℓ-th outcome from that measurement.

The set of all such strategies will be denoted by 𝐶𝑞(𝑛, 𝑘) ⊆ [0, 1]𝑛
2𝑘2

. The en-
tangled value of a game 𝔊 is then

val∗(𝔊) ≔ sup
𝑝∈𝐶𝑞(𝑛,𝑘)

val(𝔊, 𝑝).

Finally, a language 𝐋 belongs to the complexity class 𝖬𝖨𝖯∗ if there is an effective
mapping 𝑧 ↦ 𝔊𝑧 such that:

• If 𝑧 ∈ 𝐋, val∗(𝔊𝑧) ≥ 2
3 .

• If 𝑧 ∉ 𝐋, val∗(𝔊𝑧) ≤ 1
3 .

VON NEUMANN, CONNES, TURING 21

3.2.3. Other Quantum Strategies. We will define a few other important varieties
of strategies before we move on. Recall that in Definition 3.2.4, we have restricted
outselves to finite-dimensional Hilbert spaces. As it happens, this restriction is in
some ways not necessary. We will call a strategy as in the above definition but in
which the Hilbert spaces are separable and infinite dimensional a quantum spacial
strategy, and denote the set of such strategies by 𝐶qs(𝑛, 𝑘) ⊆ [0, 1]𝑛

2𝑘2
.

Clearly, we can consider 𝐶𝑞(𝑛, 𝑘) ⊆ 𝐶qs(𝑛, 𝑘), as any mere quantum strategy is
also a quantum spacial strategy that happens to only use finitely many dimensions.
Moreover, it can be shown that any quantum spacial strategy is a limit (using the
topology inherited as a subset of [0, 1]𝑛

2𝑘2
) of quantum strategies using projections

onto finite-dimensional subspaces, and so

𝐶qa(𝑛, 𝑘) ≔ 𝐶qs(𝑛, 𝑘) = 𝐶𝑞(𝑛, 𝑘).

As we are considering supremums, the distinction between these sets of strategies
does not matter much, so they will mostly be used interchangably.

Another important distinction is that of being synchronous – a strat-
egy 𝑝 is synchronous if for every 𝑞 ∈ [𝑛], there are 𝑎(𝑞)

1 , 𝑎(𝑞)
2 ∈ [𝑛] such that

𝑝(𝑎(𝑞)
1 , 𝑎(𝑞)

2 | 𝑞, 𝑞) = 1. In other words, synchronous strategies are those in which
asking the two players the same question determines (in the sense of being non-
probabilistic) the player’s answers. We will use 𝐶𝑠

𝑞 (𝑛, 𝑘) to denote synchronous
quantum strategies, and sval∗(𝔊) = sup𝑝∈𝐶𝑠

𝑞(𝑛,𝑘) val(𝔊, 𝑝), and likewise do the same
for 𝐶𝑠

qa and 𝐶𝑠
qs. Note that clearly we always have

sval∗(𝔊) ≤ val∗(𝔊).

3.3. 𝗠𝗜𝗣∗ = 𝗥𝗘. It is fairly trivial to show that 𝖬𝖨𝖯∗ ⊆ 𝖱𝖤; for a language
𝐋 ∈ 𝖬𝖨𝖯∗, we simply iterate through all possible strings, all possible finite-dimen-
sional Hilbert spaces (which effectively just requires varying the dimension 𝑑), and
then through a countable, dense subset of compatible quantum strategies. Simu-
lating each of these strategies on each 𝔊𝑧, any time we have that val(𝔊𝑧, 𝑝) > 1

3 ,
we determine that 𝑧 ∈ 𝐋, but if val(𝔊𝑧, 𝑝) ≤ 1

3 we only know that this one strategy
does not work and have not shown 𝑧 ∉ 𝐋; hence, this shows 𝖬𝖨𝖯∗ ⊆ 𝖱𝖤 and not
𝖬𝖨𝖯∗ ⊆ 𝖱.

Then, in [7], Ji Zhengfeng et al. showed that 𝖬𝖨𝖯∗ = 𝖱𝖤. To do this, it was suf-
ficient that they find an efficient mapping 𝑧 ↦ 𝔊𝑧 that serves as a proof system for
the language 𝐇𝐚𝐥𝐭, as the ability to determine whether any Turing machine halts
can be used to determine whether or not an arbitrary Turing machine outputs a
given string, thus determining membership for any 𝖱𝖤-language. The paper indeed
contains such a proof system, notwithstanding that their soundness parameter is
slightly higher.

However, what they actually were able to prove was, in a few technically but
very important ways, stronger than that:

Theorem 3.3.1 (𝖬𝖨𝖯∗ = 𝖱𝖤, [7]). There exists an efficient mapping 𝑧 ↦ 𝔊𝑧 such
that:

• If 𝑧 ∈ 𝐇𝐚𝐥𝐭, 𝑠𝑣𝑎𝑙∗(𝔊𝑧) = 1.

22 JOEL B. NEWMAN

• If 𝑧 ∉ 𝐇𝐚𝐥𝐭, 𝑠𝑣𝑎𝑙∗(𝔊𝑧) ≤ 1
2 .

4. From CEP To Computability
We now begin to bridge our previous sections together, following Goldbring and

Hart’s computability and model theoretic reformulation of the CEP as in [8].

4.1. From CEP to Model Theory. We can now restate the CEP, as given
in Definition 1.3.5, in a way that is more amenable to solution via model theory:

Theorem 4.1.1 (Model-Theoretic Restatement of the CEP; [1] Section 7.2). The
CEP is equivalent to the statement that 𝑇ℎ∀(ℛ) is the unique universal theory of
𝐼𝐼1 factors; that is, that for every 𝐼𝐼1 factor ℳ, 𝑇ℎ∀(ℳ) = 𝑇ℎ∀(ℛ).

Proof. The CEP states that for every II1 factor ℳ, ℳ embeds into ℛ𝔘 for some 𝔘.
By Corollary 2.1.9 and the correspondance between classical and continuous Model
Theory, this is precisely equivalent to Th∀(ℳ) ≤ Th∀(ℛ). Then, as ℛ embeds into
every II1 factor, for any such ℳ we have that Th∀(ℛ) ≤ Th∀(ℳ), and so we may
equivalently restate this as Th∀(ℳ) = Th∀(ℛ). □

4.2. Computability. We now turn our attention to computability. When deal-
ing with classical logic, we usually call an 𝐿-theory 𝑇 computable if there is some
algorithm that, given some L-sentence 𝜎, can determine the answer to the question
“is 𝜎 in 𝑇 ?” in finite time.

This, however, fails for continuous logic. The “truth values” of sentences in a
continuous logic is some arbitrary real number–a real number that can 𝜔-many
bits to describe. To deal with this, we decide that we have obtained a real number
through computation if, when asked, we can give approximations of arbitrary (but
finite) precision. In real terms, this means:

Definition 4.2.1 (computable 𝐿vNa-theory). We say that a 𝐿vNa-theory 𝑇 is com-
putable if there exists some algorithm that, given a 𝐿vNa-sentence 𝜎 in the domain
of 𝑇 , can in finite time return 𝜀-tight bounds for the valuation of 𝜎 in 𝑇 – that is,
rationals 𝑎, 𝑏 such that 𝑏 − 𝑎 < 𝜀 and 𝑇 (𝜎) ∈ (𝑎, 𝑏).

We want to show that if the CEP is true, Th∀(ℛ) is computable. By the above,
this effectively means finding a method of computing arbitrarily good upper and
lower bounds on Th∀(ℛ)(𝜎) = 𝜎ℛ, where 𝜎 is a universal 𝐿vNa-sentence.

4.2.1. Proof Systems and Completeness. We now pick back up the discussion
of a proof system for continuous logic given in Section 2.2.4. Again, we must move
from exactitude of true or false to approximacy of real numbers. To talk about
bounds, we introduce the notation

𝑥 ∸ 𝑦 ≔ max(𝑥 − 𝑦, 0).

If we prove Φ ⊦ 𝜎 ∸ 𝑟, for an 𝐿vNa-sentence 𝜎, we have effectively found an upper
bound on 𝜎ℳ across all ℳ. We now give the completeness theorem we will be
using, proven by [9] but in the restricted form relevant to our situation as given in
[1]: for every 𝐿vNa-sentence 𝜎, we have

VON NEUMANN, CONNES, TURING 23

sup{𝜎ℳ : ℳ a II1 factor} = inf{𝑟 ∈ ℚ>0 : 𝑇II1 ⊦ 𝜎 ∸ 𝑟}

where 𝑇II1 is a recursively enumerable set of sentences such that ℳ is a II1 factor
if and only if ℳ ⊧ 𝑇II1 . In essence, this says that our upper bounds are tight; the
infinum of the provable upper bounds is in fact equal to the greatest upper bound
of the actual values.

With the knowledge that 𝑇II1 is itself 𝖱𝖤, we can work on our bounds.

4.2.2. Upper Bound. Finding the upper bound is pretty easy – all we really
need to do is show that we can actually write 𝜎 ∸ 𝑟 as a universal sentence. First,
note that that this function is continuous. Moreover, recall that a universal 𝐿vNa-
sentence 𝜎 is a sentence of the form

(sup
𝑥𝑖1

)⋯(sup
𝑥𝑖𝑛

)𝑓(𝜑1(̄𝑥), ⋯, 𝜑𝑚(̄𝑥))

where 𝑓 is a continuous function, 𝜑𝑗(̄𝑥) is a basic 𝐿vNa-formula for 𝑗 ∈ {1, …, 𝑚},
and 𝑓(𝜑1(̄𝑥), …, 𝜑𝑚(̄𝑥)) has positive range. Thus, writing

𝜎 ∸ 𝑟 ≔ (sup
𝑥𝑖1

)𝑓(𝜑1(̄𝑥), ⋯, 𝜑𝑚(̄𝑥)) ∸ 𝑟

we have thus written 𝜎 ∸ 𝑟 as a universal 𝐿vNa-sentence, checking against
Definition 2.2.1.

We can thus proceed as follows:

Theorem 4.2.2. For any universal 𝐿𝑣𝑁𝑎-sentence 𝜎, we can compute successively
tighter upper bounds for 𝜎ℛ such that, for any 𝜀 > 0, our guess eventually (i.e. in
finite time) is 𝜀-close to the actual value.

Proof. Find some algorithm that enumerates all 𝐿vNa-proofs in 𝑇II1 . Each time
we find a proof of the form 𝑇II1 ⊦ 𝜎 ∸ 𝑟 where 𝑟 is a positive rational number, we
learn that 𝜎ℳ ≤ 𝑟 for all II1 factors ℳ, by soundness. In particular, we learn that
𝜎ℛ ≤ 𝑟 Each time we prove this for a lower value of 𝑟, we note it down, as we have
found a tighter upper bound for 𝜎ℛ.

As ℛ embeds into any II1 factor and 𝜎 is universal, we have that 𝜎ℳ ≤ 𝜎ℛ. As
ℛ is a II1 factor, sup{𝜎ℳ : ℳ a II1 factor} = 𝜎ℛ. Moreover, by completeness of
our proof system, sup{𝜎ℳ : ℳ a II1 factor} = inf{𝑟 : 𝑇II1 ⊦ 𝜎 ∸ 𝑟}. We thus can
guarantee that sooner or later, this process will find an 𝜀-close approximation. □

4.2.3. Lower Bound. Finding a lower bound is a little harder. The process in
Theorem 4.2.2 will not work for lower bounds without modification: actually
negating 𝜎 turns its supremums into infimums, and so, as we have defined it,
(𝑟 ∸ 𝜎)ℳ ≠ max(𝑟 − 𝜎ℳ, 0). We also cannot use min(𝜎 − 𝑟, 0), as for a sentence to
be universal, its range needs to be nonnegative. Instead, we use the following trick:

Recall the definition of a basic 𝐿vNa-formula given in Definition 2.2.1. There are
only three atomic functions used to obtain real numbers from elements of ℳ1, trℜ,
trℑ, and 𝑑. Recalling that we define trace to be normalized with tr(Idℋ) = 1, the
maximum value that either the real or imaginary trace may output is 1, and as we

24 JOEL B. NEWMAN

restrict ourselves to the unit ball ℳ1 of each ℳ, the maximum 𝑑(𝑎, 𝑏) may output
on any 𝑎, 𝑏 ∈ ℳ1 is also 1. As such, for any sentence 𝜎, without even considering
von Neumann algebras, we may calculate an absolute maximum 𝑀𝜎 on 𝜎ℳ across
all ℳ by replacing every occurrence of trℜ(𝑡). trℑ(𝑡), and 𝑑(𝑡, 𝑡′) (where 𝑡 and 𝑡′
are an 𝐿vNa-terms) with 1, and then calculating it out.

With that, we can calculate our lower bound:

Theorem 4.2.3. For any universal 𝐿𝑣𝑁𝑎-sentence 𝜎, we can compute successively
tighter lower bounds for 𝜎ℛ such that, for any 𝜀 > 0, our guess eventually (i.e. in
finite time) is 𝜀-close to the actual value.

Proof. We perform the same procedure as in the proof for Theorem 4.2.2, but
instead we find greater and greater values for 𝑟 such that 𝑇II1 ⊦ 𝑀𝜎 ∸ 𝜎 ∸ 𝑟. Each
time we find a value of 𝑟 that satisfies this, we know that 𝜎ℛ ≥ 𝑀𝜎 − 𝑟, and again,
by completeness, we eventually get 𝜀-close. □

Putting this together, we show the following:

Theorem 4.2.4 ([1], Theorem 7.1). If we assume the CEP, this implies that the
universal theory of the hyperfinite 𝐼𝐼1 factor is computable.

Proof. We run the algorithms we use in Theorem 4.2.3 and Theorem 4.2.2 simu-
latenously, until we obtain results that are 𝜀-close, for the given 𝜀. □

5. From MIP* To Non-Computability
Our last task is to demonstrate that Th∀(ℛ) cannot possibly be computable:

Theorem 5.0.1 ([10], as cited from Theorem 7.2 in [1]). The universal theory of
ℛ is not computable.

To do this, we use the oldest trick in the book: we show that if it were, we could
decide 𝐇𝐚𝐥𝐭.

We know from Theorem 3.3.1 that there is an efficient mapping of Turing
machine codes 𝑧 to games 𝔊𝑧 such that sval∗(𝔊𝑧) = 1 when 𝑧 ∈ 𝐇𝐚𝐥𝐭 and
sval∗(𝔊𝑧) ≤ 1

2 otherwise. Suppose that sval∗(𝔊𝑧) could be represented as an 𝐿vNa
-sentence 𝜎𝑧 such that 𝜎ℛ𝔘

𝑧 = sval∗(𝔊𝑧). Then by Theorem 4.2.4, we can compute
an 𝜀-tight bound on the value of 𝜎ℛ𝔘

𝑧 in finite time. If we set 𝜀 < 1
2 , then this bound

can only include one of 1
2 , 1; if the value is 1, we know 𝑧 ∈ 𝐇𝐚𝐥𝐭, and otherwise it

is not. Thus, finding such a representation is sufficient to prove the CEP absurd.
Recall that

sval∗(𝔊) = sup
𝑝∈𝐶𝑠

qa(𝑛,𝑘)
∑

𝑞1,𝑞2∈[𝑛]
𝜋(𝑞1, 𝑞2) ∑

𝑎1,𝑎2∈[𝑘]
𝐷(𝑞1, 𝑎1, 𝑞2, 𝑎2)𝑝(𝑎1, 𝑎2| 𝑞1, 𝑞2).

This formula is in fact a linear function 𝑠 of the values 𝑝(𝑎1, 𝑎2 | 𝑞1, 𝑞2), is clearly
continuous and thus valid in a 𝐿vNa-sentence. Thus, our next step is to find a rep-
resentation of 𝑝(𝑎1, 𝑎2 | 𝑞1, 𝑞2) using ∗-polynomials in ℛ𝔘

1 .
Luckily, the restriction to synchronous strategies makes this entirely possible. In

[1], Goldbring cites a result from [11] (specifically Theorem 3.6) that can be used

VON NEUMANN, CONNES, TURING 25

to show that 𝑝 ∈ 𝐶𝑠
qa(𝑛, 𝑘) if and only if there is a PVM (𝑓𝑎

𝑞)
𝑞∈[𝑘]

 for each 𝑎 ∈ [𝑛]
such that 𝑝(𝑎1, 𝑎2 | 𝑞1, 𝑞2) = trℛ𝔘(𝑓𝑎1𝑞1

𝑓𝑎2𝑞2
). For a tuple ̄𝑓 ∈ ℳ1 to be a PVM, we

just need to check that each 𝑓𝑖 is a projection, so 𝑑(𝑓, 𝑓∗) = 𝑑(𝑓, 𝑓2) = 0, and that
the tuple sums to Idℋ, so 𝑑(∑𝑘

𝑖=1 𝑓𝑖, 1) = 0. We thus can easily define a 𝐿vNa-
formula

𝜓𝑘(̄𝑥) ≔ max
⎝
⎜⎛max

𝑖∈[𝑘]
𝑑(𝑥𝑖, 𝑥∗

𝑖), max
𝑖∈[𝑘]

𝑑(𝑥𝑖, 𝑥2
𝑖), 𝑑

⎝
⎜⎛∑

𝑖∈[𝑘]
𝑥𝑖, 1

⎠
⎟⎞

⎠
⎟⎞

such that 𝜓𝑘(̄𝑥) is satisfied (in the sense of being equal to zero) by all and only
PVMs. Let 𝑋𝑘 ≔ { ̄𝑓 : 𝜓𝑘(̄𝑓) = 0}.

We now have rewritten sval∗(𝔊) as

sup
(̄𝑓(𝑎))

𝑎∈[𝑛]
∈𝑋𝑘

𝑠((trℛ𝔘(𝑓𝑎1𝑞1
𝑓𝑎2𝑞2

))
𝑎𝑚∈[𝑘],𝑞𝑚∈[𝑛]

).

We are not yet done though, because quantification over specific subsets of the unit
ball is not a syntactical element of 𝐿vNa-formulas. In classical logic, this would be
a technicality; 𝑋𝑘 is described by formula 𝜓𝑘(̄𝑥), so we could just use

(∀ ̄𝑥)(𝜓𝑘(̄𝑥) → 𝑠((trℛ𝔘(𝑥𝑎1𝑞1
𝑥𝑎2𝑞2

))
𝑎𝑚∈[𝑘],𝑞𝑚∈[𝑛]

))

recalling that ∀ is the equivalent of sup. Unfortunately, this does not generally
work in continuous logic—𝑋𝑘 being defined by 𝜓𝑘 is not enough to ensure that the
supremum over 𝑋𝑘 of a 𝐿vNa-formula can be written as a legitimate 𝐿vNa-sentence.
Fortunately, there are stronger criteria that can ensure that, and 𝑋𝑘 does satisfy
those!

The relevant notion is that of being a definable set. [1] gives that to meet this
criteria we need to show that for all 𝜀 > 0 there exists a 𝛿 > 0 such that for all
̄𝑎 ∈ ℛ𝔘

1 , when 𝜓𝑘(̄𝑎)ℛ𝔘
< 𝛿, there exists �̄� ∈ ℛ𝔘

1 with 𝜓𝑘(�̄�)ℛ𝔘

= 0 and 𝑑(̄𝑎, �̄�) < 𝜀.
That 𝜓𝑘 satisfies these criteria is in fact Lemma 3.5 of [11].

Thankfully, the process of writing our supremum as an 𝐿vNa-sentence is com-
putable, and the resulting 𝜎𝑘 remains universal. We thus use CEP to solve the
halting problem, and the CEP vanishes in a puff of logic.

References
[1] Goldbring, I. (2022, June 17). The Connes embedding problem: A guided tour. Bulletin of

the american mathematical society, 59(4), 503–560. https://doi.org/10.1090/bull/1768

[8] Goldbring, I., & Hart, B. (2013, August 12). A computability-theoretic reformulation of
the Connes Embedding Problem. (Retrieved May 14, 2023, from http://arxiv.org/abs/
1308.2638)

[10] Goldbring, I., & Hart, B. (2021, June 21). The Universal Theory Of The Hyperfinite II$_1$
Factor Is Not Computable. https://doi.org/10.48550/arXiv.2006.05629

[3] Hodges, W. (1997). A shorter model theory. Cambridge University Press.

[7] Ji, Z., Natarajan, A., Vidick, T., Wright, J., & Yuen, H. (2022, November 4). MIP*=RE.
(Retrieved May 14, 2023, from http://arxiv.org/abs/2001.04383)

https://doi.org/10.1090/bull/1768
http://arxiv.org/abs/1308.2638
http://arxiv.org/abs/1308.2638
https://doi.org/10.48550/arXiv.2006.05629
http://arxiv.org/abs/2001.04383

26 JOEL B. NEWMAN

[2] Jones, V. F. R. (2015, November 13). Von Neu-
mann Algebras. https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/
3392/2020/10/15162810/vonNeumann2015.pdf

[5] Keisler, H. J. (2010). The ultraproduct construction. In Contemporary Mathematics (Vol.
530). American Mathematical Society. https://doi.org/10.1090/conm/530/10444

[11] Kim, S.-J., Paulsen, V., & Schafhauser, C. (2018, March 16). A synchronous game for bi-
nary constraint systems. Journal of mathematical physics, 59(3), 32201. https://doi.org/
10.1063/1.4996867

[4] Kunen, K. (1972). Ultrafilters and Independent Sets. Transactions of the american mathe-
matical society, 172, 299–306. https://doi.org/10.2307/1996350

[6] Tserunyan, A. (n. d.). Saturation of Ultraproducts. https://www.math.mcgill.ca/
atserunyan/Courses/2014F.Math570.Logic/saturation.pdf

[9] Yaacov, I. B., & Pedersen, A. P. (2010, March). A proof of completeness for continuous
first-order logic. The journal of symbolic logic, 75(1), 168–190. https://doi.org/10.2178/
jsl/1264433914

McGill University, Montreal, QC
Email address: joel.newman@mail.mcgill.ca
URL: alternating.group

https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/3392/2020/10/15162810/vonNeumann2015.pdf
https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/3392/2020/10/15162810/vonNeumann2015.pdf
https://doi.org/10.1090/conm/530/10444
https://doi.org/10.1063/1.4996867
https://doi.org/10.1063/1.4996867
https://doi.org/10.2307/1996350
https://www.math.mcgill.ca/atserunyan/Courses/2014F.Math570.Logic/saturation.pdf
https://www.math.mcgill.ca/atserunyan/Courses/2014F.Math570.Logic/saturation.pdf
https://doi.org/10.2178/jsl/1264433914
https://doi.org/10.2178/jsl/1264433914
mailto:joel.newman@mail.mcgill.ca
alternating.group

	Operator Algebras
	∗- and C*-algebras
	Positives, Projections, Partial isometries, Oh My!

	von Neumann Algebras
	A New Order
	Factors
	Traces and II1 Factors

	The Connes Embedding Problem
	Constructing the Hyperfinite II1 Factor
	Ultrapowers (of von Neumann algebras)
	The Statement

	Model Theory
	Classical Model Theory
	Constants and Functions
	Relations and Formulae
	Theories & Elementary Equivalence
	Elementary Substructures & Embeddings
	Types
	Saturation and Ultrapowers
	Fraynes Theorem

	Continuous Model Theory
	Goldbring and Harts Continuous Logic
	Relating Continuous and Classical Logic
	Ultrapowers
	Soundness and Completeness

	Computational Complexity
	Modeling Computing
	Turing Machines
	Languages & Complexity
	Efficiency

	Interactive Proofs and Games
	Multiple Interactive Provers
	Multiple Interactive Provers, Star
	Other Quantum Strategies

	MIP∗ = RE

	From CEP To Computability
	From CEP to Model Theory
	Computability
	Proof Systems and Completeness
	Upper Bound
	Lower Bound

	From MIP* To Non-Computability
	References

